

GORT PUBLIC REALM ENHANCEMENT PROJECT

AN COIMISIUN PLEANALA CASE NO. 323066-25 GALWAY COUNTY COUNCIL RESPONSE TO OBSERVATION BY:

JSULLIVAN & TTRSA

Existing condition at R458 Gort Market Square with public parking perpendicular to 2 lanes of traffic

Preamble

Galway County Council submit the following response to the John Sullivan and TTRSA observation in respect of the Gort Public Realm Enhancement Project Part 10 Planning Application.

Galway County Council wishes to thank John Sullivan and TTRSA for their detailed observations regarding the Gort Public Realm Enhancement Project (Part 10 Planning Application). We note and appreciate the points raised in the submission and recognise the importance of ensuring that any proposed changes serve the best interests of the entire community.

We acknowledge the John Sullivan and TTRSA's concerns regarding the relocation of public parking bays and the need for safe, universal access to the hotel premises in particular for elderly persons, children, and those with limited mobility. Galway County Council shares these priorities and highlights that the current arrangement at Gort Market Square presents significant safety and accessibility challenges, as evidenced by our analysis and feedback from the wider community.

Current pedestrian safety and traffic management issues:

Throughout the course of the community consultation process leading up to the planning submission Galway County Council took careful note of Sullivans Hotels concerns and subsequently developed a design which provides for a drop-off and age friendly public parking immediately to the front of the hotel. The current public parking arrangement at the front of Sullivans Hotel poses a serious safety risk to pedestrians particularly those who are mobility impaired, elderly persons, and children.

Currently there is no safe pedestrian crossing point in front of the hotel due to the public parking arrangement which is situated directly on the desire line at the junction of the R458 and R460 (Photo 1). This parking arrangement causes significant traffic management and pedestrian safety issues (Photo 2, 3 & 4).

The Galway County Council design proposal seeks to provide safe pedestrian access, manage traffic at the junction of the R460 and R458, and provide dedicated age friendly bays along a service access road which will incorporate passive traffic calming measures. In addition to this the realignment of the R460 to R458 junction in front of the hotel will make it safer for all road users. The dedicated access road is required by Sullivans Hotel delivery vehicles as they currently stop on the R458 (photo 2) which presents a serious danger to all road users as evidenced below.

Photo 1: The current public parking arrangement in front of Sullivans Hotel at the R460 and R458 junction (boxed in red).

Photo 2: Sullivans Hotel delivery vehicles presently travel on the wrong side of the R458, facing into oncoming traffic, causing a serious a hazard. The proposed service access road will remove this danger.

Photo 3: Sullivans Hotel delivery being trolleyed along the R458 carriageway creating a hazard. The Galway CoCo dedicated access road will remove this hazard.

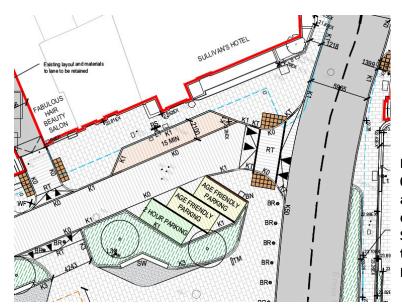

Photo 4: The vehicle reverses out of the public parking, across the 2 lanes of the R460, obstructing the traffic. A pedestrian stands in the carriageway to stop the traffic.

Photo 5: The vehicle exits the public car park in front of the hotel, drives across 2 lanes of the R460, and up the wrong side of the R458 against traffic flow.

Artist's impression of the proposed pedestrian priority access road and realigned R460 and R458 junction at Gort Market Square incorporating age friendly accessible parking.

Extract from the submitted drawing DR-L-0103 illustrating the pedestrian priority access road, pedestrian crossing at the desire line, drop-off zone in front of Sullivan's Hotel, age-friendly parking, and the realigned junction at the R458 at Gort Market Square.

The current arrangement of the public parking to the front of Sullivan's Hotel eliminates the possibility for the provision of a pedestrian crossing on the desire lines posing a significant danger to all road users

Public Parking Provision:

Within the project area there currently exists: 252 on-street car parking spaces.

The Planning Application proposes a reduction to **165** on-street car parking spaces.

This represents a loss of 87 on-street spaces.

The proposed new Barrack Street off-street car park and new Lowry's Lane off-street car parks will accommodate a total of **100** spaces.

This represents a **net gain of 13** spaces overall (including 4 RV bays), or a **5% increase** on the current parking allocation. The proposed increase of parking bays includes the provision for 4 number RV bays in the Lowrys Lane off-street car park.

The Galway County Council proposal is a response to an existential danger which must be addressed through the considered realignment of the busiest junction in the town along with the allocation of age-friendly and accessible parking. The provision of a dedicated, pedestrian priority access road will remove the current danger posed by delivery vehicles having to park illegally.

Traffic Modelling Data

1) Time period modelled

TTRSA queried why the time period modelled was longer than the peak hour traffic survey period. The data used in the model is peak-hour (PM Peak – 17:00-18:00) demand obtained from the traffic surveys. The "Junction 9" software automatically adds a 15-minute warm-up period and a 15-minute cool-down period to the hourly traffic demand to test the junction design. This allows the junction to be populated before the complete assessment begins. This is standard practice, so the model can stabilise before results are recorded. It should be noted that these warm-up and cool-down periods do not inflate demand. The actual survey-based peak-hour demand is still what the model tests, but it is surrounded by those extra periods for realism. The model start time has been updated to 16:45 to avoid confusion in the interpretation of the results.

2) Pedestrian Crossing Use

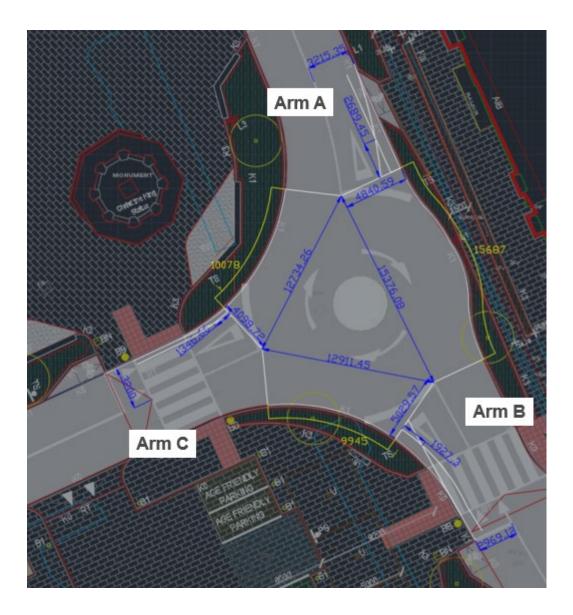
The pedestrian flows for both crossings have been taken from pedestrian survey data collected on the 24th of March 2023 (Friday). This showed a total of 18 pedestrians crossing Arm B and 39 pedestrians crossing Arm C in the PM peak hour. In response to comments received, we have undertaken further modelling which includes pedestrian demand at the crossings. This is presented in a subsequent section below.

3) Geometric Information

TTRSA suggested that the geometry of the mini-roundabout used does not reflect the mini-roundabout proposed within the scheme. Measurements have been taken from the most up to date design and are shown in Table 2 and Figure 1 below. These measurements are minimally different to the ones taken within the submitted application (shown in Table 1), and the minor changes will have minimal to no impact on capacity of the mini-roundabout. It is worth noting that the figures recorded by TTRSA shown in Table 3 differ substantially from those taken by Momentum and shown in Table 2 and Figure 1 in particular for the entry to corner kerb line distance for Arms A and C. Whilst small discrepancies in measurements are usually considered normal, these larger differences suggest that measurement methods may have varied.

Table 1 Mini Roundabout Geometry – Previous Momentum Measurements

Arm	Approach road half- width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry to corner kerb line distance (m)
Arm A	3.2	3.2	4.8	2.7	15.4	15.7
Arm B	3.2	3.0	5.0	1.9	13.0	10.0
Arm C	3.2	3.2	4.0	1.3	12.7	9.6


Table 2 Mini Roundabout Geometry – Updated Momentum Measurements

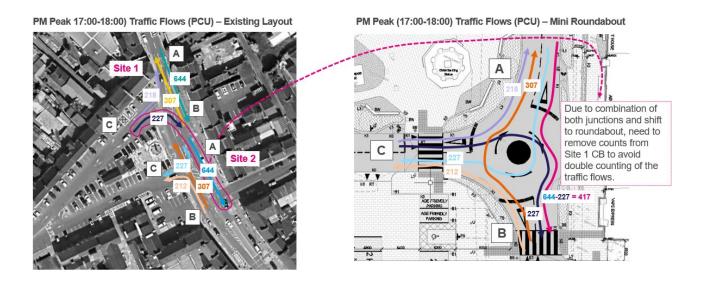
Arm	Approach road half- width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry to corner kerb line distance (m)
Arm A	3.2	3.2	4.8	2.7	15.4	15.7
Arm B	3.2	3.0	5.0	1.9	12.9	9.9
Arm C	3.2	3.2	4.1	1.3	12.7	10.1

Table 3 Mini Roundabout Geometry – TTRSA Measurements

Arm	Approach road half- width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry to corner kerb line distance (m)
Arm A	4.04	4.04	5.75	3.7	19.37	2.00
Arm B	3.80	3.52	6.49	3.5	15.11	11.69
Arm C	4.32	4.14	4.93	1.3	14.99	2.00

Figure 1 Geometrical Information

4) Crossing Measurements


The crossing measurements have been verified and the space for vehicles queuing on the exits between the roundabout and the crossings for Arm B and Arm C has been revised to 1 passenger car unit (PCU). This change has no impact on the capacity of the proposed mini-roundabout.

5) Demand Flow and Traffic Movements

The TTRSA report suggests that the demand flows and traffic movements included with the traffic modelling do not reflect the entry flows and traffic movements contained within the traffic data included within Appendix B of the consultation, in particular for the AB movement. The numbers indicated by Momentum have been checked, and are correct. As the scheme proposes to combine the 2x existing junctions into a mini-roundabout, it is not possible to take the raw numbers from the 2x existing junctions and additional calculations are required to avoid the double counting of the vehicle flows on the Arm A to B movement. As can be seen in Figure 2 below, the Arm C to B turning movements on Site 1 (227 vehicles in the PM peak)

then needed to go through Site 2 and would also have been included in the Arm A to B movement (644 vehicles) on Site 2. With the introduction of the mini-roundabout, the Arm C to B movement at Site 1 will be made directly at the roundabout and should therefore not be counted as part of the Arm A to B movement at Site 2. This explains why 417 vehicles (644-227) has been used for the Arm A to B movement in the traffic modelling for the mini-roundabout.

Figure 2 Vehicle Movement Assumptions

Updated Modelling Results

The model was re-run with the following changes:

- Updated pedestrian flows at the crossings
- Minor updates to the geometric information
- Updated the capacity between roundabout entry and pedestrian crossing 1 PCU

Figure 3 below presents the modelling results for the busiest 15-minute period of the evening peak (17:30–17:45). During this interval, the Ratio of Flow to Capacity (RFC) value of 1.09 indicates that demand exceeds the roundabout's capacity. As a result, Arm A is predicted to experience queues of up to 37 vehicles with average delays of 177 seconds, while Arm B is expected to face delays of 52 seconds (approximately 8 vehicles queuing) and Arm C delays of 54 seconds (around 7 vehicles queuing). These levels of congestion and delay are sustained across two consecutive 15-minute periods (17:15-17:30 and 17:30-17:45), meaning that significant operational issues persist for around 30 minutes during the peak hour.

Outside the peak 30-minute period, the mini-roundabout is predicted to operate within capacity, with queues not exceeding 20 PCUs and average delays remaining below 36 seconds. These levels are generally regarded as acceptable for junction operation. The outcome of the updated modelling results is consistent with the Part 10 application, where the mini-roundabout was found to be operating at or close to capacity during the peak hour, with RFC values above 0.9 across all arms as shown in Figure 4 below. These previous results have been accepted by Galway County Council's Roads and Transportation Engineer. The updated model shows a similar pattern, with Arm A reaching an RFC of 1.09. While this indicates that the junction is operating at or slightly above its theoretical capacity, the results confirm earlier findings and provide a clear

basis for considering proportionate mitigation measures to ensure the junction continues to perform acceptably.

Figure 3 Updated Modelling Results

	PM						
	Queue (PCU) Delay (s) RFC LOS						
	A1 - Scenario 1						
Arm A	37.13	177.61	1.09	F			
Arm B	7.75	52.49	0.91	F			
Arm C	6.80	53.82	0.90	F			

Values shown are the maximum values over all time segments. Delay is the maximum value of average delay per arriving vehicle.

"D1 - Scenario 1, PM " model duration: 16:45 - 18:15 "D2 - Scenario 2, AM" model duration: 08:00 - 09:30

Run using Junctions 8.0.6.541 at 25/09/2025 11:05:48

Figure 4 Previous Modelling Results in the Part 10 application

	PM						
	Queue (PCU)	Delay (s)	RFC	LOS			
	A1 - Scenario 1						
Arm A	11.11	60.12	0.95	F			
Arm B	11.30	70.04	0.95	F			
Arm C	6.87	54.40	0.90	F			

Absence of future years

TII Traffic and Transport Assessment Guidelines (2014) make clear that for schemes of this type, namely town centre public realm enhancement projects, a proportionate approach is appropriate.

This scheme does not generate new traffic demand. Instead, it reallocates existing road space to create a safer, more balanced environment for all users. As such, it would be disproportionate to forecast 10–15 years of growth as would be required for a major development. Furthermore, national and regional transport policy, including the National Planning Framework and Galway County Transport and Planning Strategy, explicitly aims to reduce private car dependency and increase the share of sustainable modes. To assume linear growth in car traffic would therefore run counter to adopted policy and the intended outcomes of the scheme.

Should future monitoring reveal changes in demand, traffic management measures could be introduced in the local area to mitigate any impacts if required and appropriate. This pragmatic, policy-led approach is entirely consistent with best practice.

Assessment of re-routing

The network in Gort is compact, with limited opportunities for large-scale diversion. There is no evidence to suggest that traffic will reroute onto the regional roads (R480, R381, R380) in any meaningful volume as a result of the proposed changes. The scheme does not introduce closures or prohibitions, but rather rebalances flows within the town centre itself. This aligns with the project's objective to reduce vehicle dominance in Market Square while making appropriate use of surrounding streets.

Conclusion:

Galway County Council values the input given by all stakeholders throughout the community consultation process. This collaborative approach brought peoples safety concerns around the current R458 to R460 junction at the historic market square to the fore. Walkability audits and consultation with persons with limited mobility who reside in the town highlighted the need for age-friendly and accessible bays which have been incorporated around the market square.

Signed on behalf of Galway County Council

Liam Hanrahan

Director of Services.